HOMOLYSIS OF THE TL-C BOND IN HYDRODETHALLATION OF ALKYLTHALLIUM(III) COMPOUNDS WITH N-BENZYL-1, 4-DIHYDRONICOTINAMIDE

* Hideo Kurosawa, Hiroshi Okada, and Masahide Yasuda Department of Petroleum Chemistry, Osaka University, Suita, Osaka, Japan

Reduction of alkylthallium(III) compounds, RTlX₂ with N-benzyl-1,4-dihydronicotinamide to give high yields of RH compounds proceeds through homolysis of the Tl-C bond of an alkylthallium(II) intermediate formed by one-electron reduction of RTlX $_{\rm 2}^{\rm }$.

In contrast to well-known hydrodemercuration of alkylmercurials by metal hydrides,¹ analogous treatment of oxythallated compounds with NaBH $_{\mathrm{A}}$ usually leads to dominant regeneration $\frac{2}{3}$ of parent olefins.² We wish to describe here a new hydrodethallation reaction using N-benzyl-1,4-dihydronicotinamide (BNAH), an NADH model (eq, l), which proceeds through homolysis of the Tl-C bond, a pathway rather unusual for organothallium(III) compounds. CONH_2

Treatment of PhCH(OMe)CH₂T1(OAc)₂ (1a) (1 mmol) with BNAH (2 mmol) in methanol (20 ml) under nitrogen at ambient temperature for 5 hr gave a-methoxyethylbenzene (2a) and [BNA]OAc, together with T10Ac, each in almost equal amounts (ca. 65 %), as confirmed by $g.l.c.$ and ${}^{1}H$ nmr spectra. In the Table are summarized the reactions of several $RT1X₂$ compounds with BNAH.

In the Table a high yield formation of 2-methyl-2,3-dihydrobenzofuran (2b) *is* particularly noteworthy, and may possess potential synthetic significance, for the NaBH_A reduction of even the organomercury(II) analog of 1^b has proven to give only low yield of $2b$.³ The lack of significant amounts of parent olefins in the products from the oxythallated adducs, la \sim lc is also interesting. Moreover, while the NaBH₄ reduction of la in CH₃OD/D₂O solution was shown^{2a} to result in highly effective deuterium incorporation in $2a$, a minor product of this reduction, no deuterium was found to be incorporated in 2a obtained from the reaction of 1a with BNAH in CD₇OD. Instead, 2a containing ca. 60 % deuterium was obtained, as confirmed by mass and ¹H nmr *spectra, from the reaction* in CH₃OH employing the 4,4-dideuterio analog of BNAH (d-content 93%).

The reaction of La with BNAH in methanol under atmospheric pressure of oxygen afforded PhCH(OMe)CH₂OH (77 %) where the formation of $2a$ was suppressed to only 5 %. In addition, esr spectra of a solution in methanol-benzene (1:1 by volume) of a , perdeuterionitrosodurene, and BNAH under vacuum exhibited resonances identical with those⁴ of PhCH(OMe)CH₂N(O·)C₆H(CD_z)_A. These results, together with the product determination pattern described above, suggest that eq. 1 involves alkyl radical intermediates. The radical may have been generated through homolysis of the Tl-C bond of an alkylthallium(IT) species which would have been formed by oneelectron reduction of RT1X, with BNAH, as in the reduction of RT1X, with ascorbic acid. 4 Oneelectron transfer from **BNAH** or its analogs to organic and inorganic substrates has previously

Compound			Solvent	Temp.	Time	Yield of RH ^a
	R	χ		$(^{\circ}C)$	(hr)	(%)
$\frac{1}{2}$	PhCH(OMe)CH ₂	0Ac	MeOH	25	S.	65
			THF	66	4	95
$\frac{1}{2}$	`CH ₂	0Ac	THF	66	4	88
ļς	$Me_2C(0Me)CH_2$	0Ac	THF	66	4	88
$\frac{1}{2}$	$n - C_8H_{17}$	0Ac	MeOH	25	15	52
$\frac{1}{2}$	p -CH ₃ C ₆ H ₄	C1	MeOH	25	48	55

Table. Reaction of $RT1X₂$ Compounds with BNAH

a By g.1.c.

been proposed.⁵ (eq. 4). Partial loss of the deuterium content on going from BNAH- $\frac{1}{4}$, to 2a might have been In methanol the alkyl radical would abstract hydrogen mostly from [BNAH]⁺ caused by *a* kinetic isotope effect and *occurrence* of an otherwise insignificant radical redistribution path⁶ as a result of the decrease in the rate of eq. 4 involving deuterium transfer.

Thanks are due to Dr. R. Konaka of Shionogi Chemicals for a kind gift of the nitrosodurene This work was supported by a grant-in aid by the Ministry of Education, Japan (464166).

References

- 1. J. M. Jerkunica and T. G. Traylor, Org. Synthesis, 53, 94 (1973).
- 2a. S. Uemura, A. Tabata, and M. Okano, Chem. Comm., 517 (1972).
- 2b. S. Uemura, H. Miyoshi, M. Okano, I. Morishima, and T. Inubushi, J. Organometal. Chem., 165, 9 (1979).
- 3. A. Lethbridge, R. 0. C. Norman, and L. B. Thomas, J. C. S. Perkin I, 2465 (1975).
- 4. H. Kurosawa and M. Yasuda, Chem. Comm., 716 (1978).
- 5a. F. M. Martens, J. W. Verhoeven, R. A. Gase, U, K. Pandit, and Th. J. de Boer, Tetrahedron, 34, 443 (1978), and references therein.
- Sb. T. Okamoto, A. Ohno, and S. Oka, Chem. Comm., 181 (1977).
- 6. The g.1.c. and mass spectral analysis of the products from $1a$ and BNAH- d ₂ confirmed formation of a small amount of a-methoxystyrene.

(Received in Japan 19 December 1979)